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Numerical integrations of the Navier-Stokes equations for flow past a smooth, 
three-dimensional, surface-mounted obstacle are presented. The variation of the flow 
with Reynolds number, and with geometric ratios such as the maximum slope of the 
obstacle, are investigated. The separated flow is investigated using visualizations of 
the surface-stress patterns, and also particle trajectories through the flow. 

1. Introduction 
Fluid flow past three-dimensional surface-mounted bluff obstacles is a subject of 

considerable interest in many fields. I n  the widest context, atmospheric flow over 
bluff topography or buildings, flow over protuberances on aircraft or vehicles, and 
internal flows over obstacles in pipes and ducts all demand an understanding of the 
general phenomenon. Sedney (1973) presents a review of the subject, and indicates 
the complete lack of detailed knowledge of such flows. The principal difficulty is the 
problem of the measurement and visualization of the enormous amount of information 
necessary to describe a complex three-dimensional flow. Hunt et al. (1978) present a 
purely kinematical study intended as an aid to interpretation and comprehension of 
three-dimensional separated flows, underlining the shortcomings of experimental 
results; the data is often incomplete or ambiguous, and requires interpretation to give 
a complete description of the flow field. Except for the simplest geometries, even the 
most general features such as separation lines may be unknown. 

In  many physical problems, numerical computation is used as a means of obtaining 
greater detail, complementing experimental results. The present speed and size of 
digital computers makes the numerical solution of some three-dimensional flow 
problems possible. In  contrast to experimental methods, numerical solution of the 
equations of motion provides a complete description of the velocity field, but suffers 
stricter restrictions on the parameters and geometries which can be studied. In  this 
paper, some numerical solutions of the Navier-Stokes equations for flow over surface- 
mounted obstacles with simple geometry and moderate Reynolds numbers are 
presented. If the results of this study are to correspond with the continuous solution 
of the differential equations then, a t  the very least, the resolution of the finite difference 
model must always be finer than any scales of the continuous solution. It is this 
requirement which sets a limit to the Reynolds numbers for which a solution can be 
obtained. This computational requirement proves to be very stringent for objects 
with sharp corners, such as cubes, and the present work deals with smoothly shaped 
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obstacles. It is hoped that the thorough flow visualization obtained from these 
calculations will not only be of interest in its own right, but will also help clarify the 
mechanisms at work in more complex flows. 

Before describing the numerical techniques and results, some general concepts of 
separated flows are worth considering. In two dimensions, separation is unambiguously 
defined by a streamline detaching from the surface, generating a closed circulation. 
Unfortunately, the situation is not so simple in three dimensions. Separation a t  very 
large Reynolds number is identifiable by the boundary layer leaving the surface, but a 
useful definition of separation valid for all Reynolds numbers is not so obvious. 
Lighthill (1963) considers the singular points in the surface stress field, i.e. the points 
where the vector tangential stress vanishes, and suggests that separation and attach- 
ment lines must begin and end in singular points. The nature of these points has been 
characterized in terms of ‘nodes ’ and ‘ saddle points ’, applying topological principles 
to determine constraints on the possible streamline patterns (see e.g. Lighthill 1963; 
Hunt et at. 1978). These singular points are undoubtedly the most striking feature of a 
flow pattern when they are present, and we shall relate our numerical results to the 
recent results of Hunt et al. (1978) where possible. However, singular points are shown 
not to be necessary for separation to occur, and in 4 we shall present an example of 
a separated flow without any singularities in the surface stress field. 

It is, of course, difficult to discuss separation without a firm definition of the 
phenomenon. Throughout this paper, we use the term in an intuitive manner. By a 
separated flow in the context of surface-mounted obstacles, we mean a flow in which 
fluid particles originating close to the surface upstream can be transported some 
distance away from the surface. Thus, particle trajectories are used to determine 
whether or not the flow is separated. It may be possible, following Maskell (1955), 
to form a strict definition, based on the above, by defining ‘close to the surface’ as the 
limit as the point of origin of the particle approaches the surface. Then a separated 
flow would be one in which a particle originating arbitrarily close to the surface 
upstream, was displaced by a finite distance from the surface at some point on the 
trajectory. The definition could be made more general by removing the constraint 
that the point of origin be upstream, any point on the surface would suffice, allowing 
flow over free obstacles to be included. It is not clear whether this definition would 
contain all the known separations, since the detailed structure is only known in very 
simple cases. The point is not pursued here, since any definition involving such limits 
is impossible to apply strictly to a finite-difference solution, and is even more academic 
in experimental investigations. 

2. Equations of motion and boundary conditions 

Navier-Stokes equations for an incompressible, rotating fluid, i.e. 
The equations of motion governing the integrations reported in this paper are the 

au 
at 
- + U . v U  = - v p + 2 f i A U + V v 2 U ,  

v . u  = 0, 

where u = (u, v, w) is the velocity, p is the pressure, v is the kinematic viscosity, and 
S2 is the basic rotation. As we shall see later, the basic rotation is dynamically negligible 
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FIGURE 1. Schematic diagram of domain of integration. 

in the integrations to be presented. The Coriolis term, 251 A u, is necessary to obtain 
a horizontally homogeneous boundary layer; this point is discussed below. 

The geometry and co-ordinate system are illustrated in figure 1, showing the lower 
boundary defined by z = h(x, y). The boundary conditions on the upper and lower 
surfaces are 

u = o  on z = h(x,y) ,  

respectively. Thus the upper surface is a slippery, rigid lid, although this was located 
sufficiently far away to effectively simulate an infinite fluid in the integrations below. 

In both horizontal directions, the domain of integration is taken to be periodic. 
The main reason for this choice, apart from its simplicity from the numerical aspects, 
is our interest in the total drag due to presence of a hump. The drag is composed of a 
pressure force on the obstacle together with the viscous stress on the surface. The 
influence of the hump on the viscous stress may extend very far downstream, and is 
consequently very difficult to calculate accurately, unless the domain is self-contained 
as in the periodic case. The results of the force calculations are described in Mason & 
Sykes (1979), but since the integrations demand a great deal of computation it has 
proved impossible to calculate a similar range of flows without rotation. The basic 
rotation is necessary if periodic boundary conditions are specified, since a horizontally 
homogeneous background state is required. The Ekman boundary layer (see e.g. 
Greenspan 1968) satisfies this condition, but the direction of the velocity swings 
through 45" between the surface and the free stream. A non-rotating boundary layer 
grows in the downstream direction ; thus periodicity is precluded. 

Although it has some geophysical relevance, the non-parallel incident flow com- 
plicates the flow around the obstacle, and the periodic boundary conditions sometimes 
mingle upstream and downstream effects. Thus, a small number of integrations have 
been made using different boundary conditions in order to study parallel flow past an 
isolated obstacle. In  these cases, the rotation frequency S2 = 0, and the Blasius 
boundary-layer profile is used to define the velocity at the inflow boundary. A simple 
outflow condition, described in the next section, is specified a t  the outflow boundary, 
allowing disturbances to leave the domain. 

15-2 
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For these integrations, in order to economize on computer resources, the flow is 
assumed to be symmetric about the centre-line of the obstacle, y = 0. This may 
artificially stabilize the flow, e.g. by preventing time-dependent eddy shedding, but 
the results still serve their prime purpose of giving a clearer picture of the flow field. 
In  they direction slippery, rigid walls are imposed, i.e. 

au aw 

a Y  a Y  
_ -  _ - -  - v = 0 on y = 0, L,, 

where A, is the width of the integration domain. 

3. Numerical method 
The numerical techniques available for the solution of the Navier-Stokes equations 

on an orthogonal mesh of grid points are well documented and plentiful. The most 
difficult aspect of the present work is the inclusion of an irregular lower boundary. 
The method used here is a crude but simple technique which allows the equations to 
be solved accurately on the normal Cartesian mesh, provided certain restrictions are 
met. A complete description of its application to two-dimensional flows is given in 
Mason & Sykes (1978), but a brief discussion is in order here. 

A Cartesian mesh of grid points is defined, without regard to the position of the 
surface; thus a number of points in the domain of integration will be below the lower 
boundary, and consequently outside the physical domain. The velocity on all such 
non-physical points is maintained at  zero throughout the integration. Derivatives 
involving points near the boundary must be considered separately, since the actual 
surface lies between grid points. The simplicity of the method is due to the fact that 
only the viscous term is modified near the surface. Whenever a viscous stress term, 
i.e. viscosity multiplying a velocity gradient, is calculated using velocity values from 
both sides of the boundary, a modified value of viscosity is used which ensures that 
the stress has the same value as the stress calculated assuming zero velocity on the 
surface. Figure 2 illustrates the situation when a vertical derivative of the x component 
of velocity is being calculated. The grid length is A, so the stress calculated by the 
model is 

since up = 0. vtnt is an interpolated viscosity value, chosen to make the stress equal 
to vuQ/(A - r ) ,  which is the value obtained assuming u vanishes on the surface. Thus 

A 
v,,, = v- A - 7 -  

Other components of the stress tensor are calculated analogously. Note that these 
approximations are only first-order accurate; thus the error will be O ( A / h )  where h 
is the scale of variation of the stress. No attempt to modify the inertial term is made; 
thus the errors in this term will be O( 1). However, since the velocity vanishes on the 
surface, the inertial term is very small and is shown in Mason & Sykes (1978) to be 
O(A/h)2 relative to the viscous term ; hence the errors are also negligible. 

The length scale of the stress variation, A, is not simply the boundary-layer depth. 
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FIGURE 2. Illustrating the intersection of the curved 
boundary and a line of grid points. 

but must be obtained from a scale analysis of the dynamical equations. For the 
situation we are considering here, the balance near the surface must be between the 
inertial and the viscous terms. The stress has a magnitude of order vU,/S, where U, is 
the free stream velocity, and S is the boundary-layer depth. Hence the viscous stress 
gradient will be - uU,/SA. In  the flows considered in this paper, all length scales will 
be of order S; thus the inertial term within a distance of O(h) of the surface will be - h2Ui/83, assuming h < 6. Thus equating the two magnitudes gives 

A = (uS2/Uo)t = aRe-+, 

where Re = UoS/u, the Reynolds number of the boundary layer. This provides the 
restriction on the grid spacing which must be satisfied for this method to give accurate 
results. If a no-slip boundary is required, this method is not very restrictive, since the 
scale h is a dynamical scale near the surface which must be resolved in any model. 
The only problem with the Cartesian mesh is that the grid points must be distributed 
throughout the height of the obstacle rather than in a layer on the surface. However, 
in a separated flow, the resolution is required in the lee of the hump to resolve the 
shear layers there ; therefore the grid points away from the obstacle are not wasted. 

This Taylor series approximation for the terms near the boundary is not new; 
indeed some workers have also approximated the inertial terms by a similar technique. 
The novelty of the method used here is the ability to solve the Poisson equation for the 
pressure in thc entire Cartesian domain, rather than the physical domain. It is shown 
in Mason & Sykes (1978) that pressure can be defined below the boundary in such a 
way that the continuity equation (2) is satisfied everywhere. This allows the use of 
fast numerical techniques for the solution of the elliptic equation, which, together with 
the fact that only the viscous term is modified near the surface, makes our method 
computationally very fast. The execution time is essentially the same as that for a 
Cartesian model with plane boundaries. 

The basic model used in this work has a mesh of up to 4 0 x 3 2 ~ 4 0  points in 
the (x, y,z) directions respectively, with the ability to stretch the grids in all three 
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co-ordinate directions. Spatial differences are second-order accurate provided the mesh 
size does not change too rapidly (Kalnay de Rivas 1972), and the stretching allows grid 
points to be concentrated in the area of interest. The temporal derivative is approxi- 
mated by the ‘leap-frog ’ centred difference, and the inertial terms use the conservative 
form due to Piacsek & Williams (1970). Variables are stored on the usual staggered 
mesh, see e.g. Williams (1969). The viscous terms are in the Du Fort-Frankel form 
(see e.g. Potter 1973), to avoid the unconditional instability associated with the 
‘leap-frog’ timestep. The Poisson equation is solved on the non-uniform grid by a 
direct method due to Farnell (1979). This method is an extension of the Fourier 
analysis technique, and uses eigenvectors of the finite difference operator to effect a 
direct solution in two of the directions. The final solution is then obtained by line 
inversion in the third direction. With a full mesh of grid points, the execution time is 
8s per time step on an IBM 360/195; this figure 5ncludes transfers between back-up 
store and main core. The non-rotating model is identical in its formulation but has 
more flexibility in the number of grid points in each horizontal direction. The total 
number of points in a horizontal section must not exceed 1280, but may vary between 
64 x 20, and 40 x 32 in the (x, y)  directions; the smaller number of points in the trans- 
verse direction being due to the transverse symmetry condition. 

Finally, we describe the outflow condition in the non-rotating model. If the normal 
component of velocity a t  the outflow boundary is time dependent, then an extrapolated 
value on the boundary must be set before the Poisson equation for pressure can be 
solved, and the velocity fields advanced. Sophisticated techniques are available to 
calculate the extrapolated value in a way which minimizes the reflectivity of the 
boundary, e.g. Clark (1977). The extrapolation used here is extremely simple, but is 
stable and effective. We set 

utN+l = 1 * 5 ~ & - ~  - O ~ ~ U N - ~ ,  t 

where the superscript denotes the time level and the subscript denotes the x co- 
ordinate. Thus the boundary value on the Nth point a t  the advanced time level is a 
linear extrapolation using the current values on the adjacent interior grid point and 
the third point upstream. This extrapolation formula prevents the build-up of energy 
in grid-scale modes. Other velocity components are similarly extrapolated in space, 
but need not be extrapolated in time, so all the quantities in the formula will be at  the 
same time level. This outflow condition was found to be stable but reflected some of 
the incident disturbance. Hence the temporal evolution of the flow was affected by 
the initial velocity field interacting with the outflow boundary. However, we are 
principally interested in the steady-state solution, and the boundary condition does 
allow an arbitrary velocity profile at  the outflow; thus the extreme complications 
necessary to achieve better transparency were not considered worthwhile here. 

The fields used as the initial conditions for these integrations must be chosen to 
satisfy cintinuity. The Blasius profile as a function of distance from the flat boundary, 
z = 0,  is set a t  each point above the physical boundary, z = h(x, y). The x components 
of velocity in each vertical column are then adjusted by the addition of a velocity 
independent of z ,  to give the same volume flux as that in the upstream profile. A 
vertical (w) velocity component is then calculated from continuity. This initial 
disturbance extends throughout the depth of the fluid, i.e. up to z = D,  and has to be 
convected out of the domain before a steady solution can be achieved. 
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4. Results 
All the integrations use a smooth obstacle with circular symmetry, and shape 

[h, cos2 (& (z2 + yZ)') , x2 + y2 < a2, 
4 x ,  Y) = 

I 0, x2 + y2 > a2, 

where h, is the maximum height, and a is the base radius. Any flow is effectively 
defined by three dimensionless numbers, namely a Reynolds number, Re = UoS/v,  
and two ratios of scales, h,/S and a/S. As before, U, is the free-stream speed, and S is 
the boundary layer depth. The Rossby number, Ro = U,a/Q, is strictly a fourth 
parameter, but in the integrations Ro is larger than 10, usually about 100, implying 
that the basic rotation plays no part in the dynamics of these flows. In all cases, the 
depth of the integration domain, D,  is taken to be large enough to approximate to an 
infinite fluid. The computational efficiency of our model has enabled us to carry out 
enough integrations to study variations of all three independent parameters. Each 
integration was continued until the solution was steady, or until the initial transients 
had disappeared in the case of unsteady flows. This usually required about 1200 time- 
steps, representing an actual time of about 40a/U,. 

Apart from cross-sections of velocity fields, two other methods of flow visualization 
were employed. The surface stress pattern is displayed by calculating trajectories on 
a horizontal plane using the two horizontal components of tangential surface stress 
as the velocity field. A uniformly spaced array of 40 x 30 points in the horizontal plane 
was used as starting points for the trajectory calculations. From each point, trajectories 
were calculated numerically from the surface stress field, using a fourth-order Kutta- 
Merson variable step technique (see e.g. Williams 1972). Values of the stress at inter- 
mediate points were linearly interpolated from grid point values. Trajectories were 
calculated both forward and backward for a short distance, which slightly randomizes 
the end points of the lines. The resulting pictures are very similar to the oil-streak 
surface stress data obtained in experiments. The second display method is a perspective 
view of the three-dimensional trajectory of a fluid particle, calculated from the 
numerical velocity field. The integration and interpolation techniques are precisely 
the same as in the surface stress patterns. 

We first present the results of our integrations of rotating flows, divided into 
sections describing the variation of each independent parameter. Finally, some data 
from non-rotating parallel incident flow integrations are described. 

(a )  Variation of Re 

For the four integrations in this section, the geomet,ric ratios are held constant at  
h,/S = a/S = 1. A mesh of 40 x 32 x 32 points was used, with a grid spacing in the 
vicinity of the obstacle of about h,/10. The free-stream flow is in the x direction from 
left to right in the diagram, implying the surface flow is at 45" as indicated by the 
bold arrows. 

Figure 3 shows surface stress patterns from flows a t  four different Reynolds numbers. 
A t  the lowest Reynolds number, Re = 20, which is illustrated in figure 3 (a) ,  the flow 
remains attached, although the surface stress vectors are clearly deflected over the 
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(C) ( d )  
FIGURE 3. Variation of surface stress pattern for Ekmctn boundary layer flow with 

Reynolds number; (a)  Re = 30, (6) Re = 60, ( c )  Re = 200, (d) Re = 600. 

hump. At Re = 60, figure 3 ( b ) ,  separation is evident with reversed flow in the lee of 
the obstacle. This pattern exhibits the simplest combination of singularities, namely 
one node on the back slope, and one saddle point downstream; see e.g. Hunt et al. 
(1978). 

Increasing the Reynolds number to Re = 200, figure 3 (c), changes the character of 
the downstream separation. The enhanced reversed flow causes the nodal separation 
point in figure 3 ( b )  to split in the transverse direction giving a separation line con- 
necting a number of singularities, with the suggestion of a spiral node a t  one of the 
extremities. The length of the reversed flow region is also increased. Figure 3 (c) also 
shows upstream separation, with flow near the surface diverging a t  the upstream 
saddle point, and reversed down the front-facing slope from the node. 

Finally, figure 3 ( d )  shows the surface stress pattern with Re = 600. We must 
emphasize that this integration is strictly beyond the capabilities of our numerical 
model. The restriction on grid length imposed by the requirement that the nonlinear 
energy cascade to short wavelengths be closed, i.e. that there is sufficient dissipation 
in the system, is not satisfied here. (This restriction is actually stronger than that 
implied by our method of including the curved boundary.) There is energy on the 
shortest scales in the numerical results with amplitude of about 20 % of the maximum 
perturbation. This is principally due to the thin shear layer leaving the rear of the 
obstacle, and moving diagonally into the stretched mesh. The short waves have been 
numerically filtered in figure 3 (d), therefore the results must be regarded with caution. 
The flow is not steady a t  this Reynolds number, and the separation line has clearly 
rolled up into vortices, which appear to break away downstream periodically. Figure 
3 ( d )  illustrates the surface stress pattern a t  t = 34a/Uo, showing a vortex moving 
downstream on the upper half of the flow, with a new vortex forming on the rear 
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FIGURE 4. Two perspective views of particle trajectories illustrating the rear 
separation flow in the case Re = 200 (Ekman boundary layer). 

slope of the obstacle. This is precisely as expected at  higher Reynolds numbers as the 
separation lines become the edges of vortex sheets which will tend to roll up from the 
ends. 

Information about the nature of the flow in the separated regions can be obtained 
from plotting particle trajectories. Figure 4 shows two perspective views illustrating 
the steady rear separation in the Re = 200 case. The four trajectories originate at a 
height of h,/10 above the surface upstream of the obstacle. Fluid approaching close 
to the base of the hump is deflected around the side, and then travels up the rear 
slope in the reversed flow. After reaching the separation lines, fluid particles move 
away from the surface almost horizontally, and clearly do not reattach downstream. 

Figure 5 shows similar views of the upstream separation in the same flow. Flow 
attaches to the front slope at  the upstream node in figure 3 ( c ) .  From this point particles 
spread over the surface of the obstacle. One of the trajectories moves back down the 
forward slope, then continues around the side and into the rear separation close to 
the surface. It finally separates there, and moves away downstream a t  a similar 
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FIGURE 5 .  Two perspective views of particle trajectories illustrating the upstream 
separation flow in the case Re = 200 (Ekman boundary layer). 

height to its point of origin. The other trajectories are deflected more simply over the 
summit and around the sides, where they separate from the upstream side of the 
separation line. 

(b )  Variation of h,/a 

In  the integrations in this section, the Reynolds number Re = 200, and h,/S = 1, 
while the slope parameter h,/a is varied. 

Figure 6 (a)  shows the surface stress pattern when h,/a = 3, while figure 6 ( b )  is 
identical to figure 3(c), i.e. h,/a = 1. The decrease in radius of the obstacle clearly 
restricts the separation line to a point, probably due to the decrease in Reynolds 
number based on the horizontal dimension. Figures 6(c)  and (d) show the stress 
field with h,/a = 4, and h,/a = 8 respectively. The asymmetry of the flow is 
more pronounced at  these parameter values, and the fluid is entrained into the 
reversed flow region from one side only. An interesting feature of these flows is 
that there are no singularities associated with the separation line. Figure 7 shows 
trajectories for the case h,/a = 3 ,  clearly illustrating that the flow is indeed separated. 
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(C) ( d )  

FIQURE 6. Variation of surface stress pattern with h,/a for Re = 200; (a) h,/a = 3, 
( b )  h,/a = 1, (c) h,/a = #, (d) h,/a = + (Ekman boundary layer). 

Thus, the presence of singularities in the surface stress field are not necessary for the 
occurrence of separation. 

(c) Variation of ho/6 

In this section, the Reynolds number Re = 200, and a/& = 1. The results for increasing 
h,/6 from 4 up to 2 are shown in figure 8. It is clear that separation is becoming more 
violent as ho/S increases, in fact the instantaneous flow shown in figure 8(d )  is very 
unsteady and strongly influenced by the periodic boundary conditions. However, it 
appears that the major effects are due to the change in effective Reynolds number 
R, = U,h,/v, where 

1 hQ u - - j- u,(z)dz 
h - h o  0 

and uo(z) is the upstream boundary layer profile. As ho/S decreases, the obstacle 
becomes submerged in the boundary layer, and the average velocity impinging on the 
obstacle is reduced. This must be borne in mind in the interpretation of figure 8. 

( d )  Parallel flow results 

Since the Ekman layer and periodic boundary conditions make the flow structure 
more difficult to interpret, a small number of integrations were performed using a 
non-rotating model with a Blasius boundary-layer upstream. This allows both longi- 
tudinal and transverse cross-sections of the flow to be usefully examined. Whilst the 
gross features of the separation are visible in the previous integrations, the more 
subtle details of the work are impossible to distinguish. This is because the moderate 
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FIGURE 7. Two perspective views of particle trajectories illustrating the rear 
separation flow in the case Re = 200, h,/a = + (Ekman boundary layer). 

Reynolds number implies that disturbances are damped fairly quickly downstream, 
therefore the trajectories are rapidly dominated by the streamwise velocity component, 
and appear straight. However, a t  higher Reynolds numbers, details of the secondary 
flow in the wake become much more pronounced. Features such as horseshoe vortices 
can dominate a t  high Re, producing spiral trajectories in the wake. 

The boundary layer thickness, S, is defined as the displacement thickness of the 
incident Blasius profile throughout this section. The first integration has Re = 200, 
h,/S = 1, and a/& = Q, so corresponds to the flow illustrated in figure 6(a) .  The 
surface stress pattern for the non-rotating flow is illustrated in figure 9, and has a 
similar structure to that of figure 6 (a). 

Figure 10 shows the velocity directions in the longitudinal section through the 
plane of symmetry, y = 0. These are produced in precisely the same manner as the 
surface stress patterns, using linear interpolation to obtain velocities between grid 
points. This is the cause of the slightly peculiar behaviour of the streamlines very close 
to the surface. The position of the surface is only included via the viscous stress, so 
linear interpolation near the surface is not accurate. However, streamlines more 
remote than the nearest grid point to the surface are completely unaffected by this 
inaccuracy. Figure 10 clearly shows that the rear separation does not reattach but 
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(C) (d )  

FIGURE 8. Variation of surface stress pattern with ho/6; (a) h,/6 = i, (b )  h,/6 = 4, (c) ho/6 = 1, 
(d) ho/6 = 2. The effective Reynolds numbers (see text) are R,, = 6, 24, 100, and 300 respectively 
(Ekman boundary layer). 

FIGURE 9. Surface stress pattern for parallel flow integration 
with Re = 200, ho/& = 1 and h,/a = 3. 

FIGURE 10. Longitudinal (streamwise) section showing velocity directions in 
the centre-plane for the flow shown in figure 9 (parallel flow). 
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FIGURE 11. Transverse sections taken at the downstream extremity of the obstacle for the flow 
shown in figure 9 (parallel flow). (a) shows contours of the streamwise velocity component and 
(b )  secondary flow directions. The velocity contour values refer to a dimensionless free stream 
speed of 10. The vertical scale is plotted with a uniform grid spacing; the actual grid-point co- 
ordinates are indicated by the arbitrary height scale on which h, has value 1000, 

FIGURE 12. Surface stress pattern for parallel flow integration 
with Re = 300, h,/S = 2, h,/a = 1.  

that fluid moves away horizontally downstream. Thus, in accord with Hunt et al. 
(1978), both singularities upstream are attachment points, the pattern being almost 
symmetric about the centre of the obstacle. 

Figure 11 ;how8 a transverse cross-section just behind the hump. The streamwise 
velocity component shows a slight shear layer associated with the separation. This 
diffuses very rapidly downstream. The secondary flow directions show two vortices 
outside the shear layer, one a t  the top in the centre and the other low down at the side. 
Both vortices rotate counter-clockwise. These are produced by the horseshoe vortex 
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FIGURE 13. Transverse sections taken at the downstream extremity of the obstacle for the parallel 
flow shown in figuref 2.  (a )  shows contours of the streamwise veIocity component and (b )  secondary 
flow directions. The arbitrary scales are as with figure 11.  

mechanism, i.e. upstream vortex lines being bent around the obstacle. From the surface 
stress pattern in figure 9, it  can be seen that flow near the top of the obstacle flows 
around it, and flow near the surface is swept wide around the base. These two com- 
ponents appear to produce the two vortex centres in figure 11. Flow at intermediate 
levels upstream is entrained through the upstream separation into the rear separation, 
and thus emerges downstream on the inside of the shear layer. This part of the cross- 
section is dominated by the rising motion although a component of vorticity in the 
clockwise sense is visible. 

The final integration is for Re = 300, h,/8 = 2, and a /8  = 2. This integration has a 
mesh of 64 x 20 x 32 points, and grid lengths in the vicinity of the obstacle are about 
h,/10 again. The principal source of grid scale features in the similar flow in figure 
6(d) was the fact that the shear layer did not remain within the region of fine grid. 
In  the present integration, the grid length variations are below lo%,  and the data 
presented contain no numerical smoothing. The flow is unsteady, with eddies travelling 
downstream and leaving the domain. The outflow condition does not seem to induce 
much upstream influence, and appears to transport the disturbances cleanly across 
the downstream boundary. Unfortunately the imposed transverse symmetry almost 
certainly affects the dynamics of the eddy shedding; this must be borne in mind 
when interpreting the results. The rear separation, as illustrated by the surface stress 
pattern (figure 12), shows the usual saddle point on the axis downstream of the 
obstacle splitting into a saddle on either side (only one side shown in the figure) and 



448 P. J .  Mason and R. I .  Sykes 

(el 

FIUURE 14. Longitudinal (streamwise) sections showing velocity directions in the centre-plane 
for the parallel flow shown in figure 12 at different times. The dimensionless times, in units of 
a/u,,, are (a) 68.9, (b )  70.5, (c) 72.1, (d) 73.7, ( e )  75.3. 

a node on the axis. The separation line clearly passes through a number of singularities, 
and is rolled up a t  its extremities. The surface stress pattern is relatively steady; 
the time-dependence is more obvious in the vertical sections presented below. 

Figure 13 is a transverse cross-section immediately downstream of the obstacle, 
showing that the shear layer is much thinner than that in the previous flow. It is 
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FIGURE 15. Longitudinal (streamwise) soction showing contours of the streamwise 
velocity component for the parallel flow shown in figure 12. 

resolved by about three points at its narrowest section. The horseshoe vortex outside 
the shear layer is much stronger than in the previous flow, and has only one centre 
of rotation. 

Figure 14 shows the streamlines in the longitudinal section through the centre-plane, 
y = 0, at a sequence of five different times. 

The most striking feature of figure 14 is the rolling up of the flow leaving the top 
of the obstacle. As might be expected, the thin shear layer is not very stable, and 
temporal variations seem to be due to 'flapping' of this vortex sheet. The sequence of 
streamlines shows swirls in the velocity field being generated immediately downstream 
of the obstacle, where the shear layer is thinnest, and travelling downstream and 
decaying. This eddy shedding is a regular phenomenon, and the Strouhal number, 
walU, = 1. w is the frequency of the eddy shedding. The change in the downstream 
surface singularity from a simple saddle point is further evinced in this vertical 
section. The pattern of the upstream separation has also changed, developing an 
apparently closed circulation. It is impossible to  determine whether the streamlines 
are actually closed, since the results are numerical, but it is clear that there is a 
singularity away from the surface. 

Returning to the spiral nodes associated with the downstream shear layer, figure 
15 shows the longitudinal section of the streamwise velocity component. The shear 
layer leaving the back of the obstacle can be clearly seen. The dramatic spiralling flow 
visible in the streamlines is associated with minor perturbations of the shear layer; 
there is no rolling up of the shear layer itself. 

5. Conclusions 
The numerical integrations of flow around a surface-mounted obstacle have 

demonstrated a number of features of three-dimensional separation. First, there are 
no closed stream surfaces in any of the flows presented here. The separating streamline 
does not reattach on the surface, but remains at some finite height downstream. 
Singularities in the surface stress field are not a necessary condition for separation. A 
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separation line can begin with a simple convergence of the limiting surface trajectories, 
and end with a cessation ofthat convergence. 

In the integrations we have performed, it appears that Reynolds numbers of about 
500 were necessary for the rolling up of streamlines to occur. This is a characteristic 
feature of high Reynolds number flows, with spiral nodes in the surface stress patterns, 
and also in fluid trajectories. 

The results presented here demonstrate the utility of this numerical method in the 
study of flow over obstacles. With the number of grid points available in the work 
reported here, there is an upper bound on the Reynolds number of about 500. This 
restriction on Reynolds number is not basically due to the method of representation 
of the irregular lower boundary, but results from the more general requirement that 
small scale flow features are adequately resolved. 

We should like to thank Miss P. Ward for the development of the programs to 
produce the three-dimensional perspective views of the trajectories. 
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